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1. INTRODUCTION

Many connections require that the source retransmit any data message not correctly

delivered to the destination. There are a variety of methods that can be used to indicate to the

source that a message needs to be retransmitted. The methods differ in the delay until the

source performs the retransmission, the amount of overhead and complexity involved, and

whether unnecessary retransmissions can occur. We focus our analysis on retransmission

schemes that rely on a polling mechanism.

The polling mechanism can be either explicit or implicit. For example, the source can send

an explicit poll message indicating which messages it has sent and requesting that the receiver

send a status message indicating which messages it has received. Or, a data message can serve

as an implicit poll. For example, assume we have a system where messages are expected to

arrive in sequence. Then the arrival of a message with sequence number SN can be considered

to be a poll questioning the arrival of all messages with sequence number less than SN.

In Section 2, we present a delay criterion that can be used to gain insight into the

performance of general retransmission schemes; in Section 3, we use this criterion to evaluate

poll-based schemes. We show that the biggest drawback of poll-based schemes is that they

potentially can result in large retransmission delay when bursts of messages are lost. Their

main advantage is that if data arrives in-sequence at the receiver, then unnecessary

retransmissions can be eliminated.

One alternative to polling is to rely on a timer to trigger retransmissions. In a typical timer

implementation, if an acknowledgement of a message is not received by a certain time, the

source retransmits the message. Timer-based schemes potentially lead to many unnecessary

retransmissions. However, in certain systems, they result in low retransmission delay. We

review timer-based schemes in Section 4 (also see [1,2]), and compare them with poll-based

schemes in Section 5. Our analysis shows that poll-based schemes are best suited for systems

where bandwidth efficiency is important. In the past bandwidth efficiency was very important

due to the high cost of data transmission; in the future, low delay will likely be more important.

Timer-based schemes are capable of producing low retransmission delay if the round trip delay

is not highly varying; they perform poorly when it is highly varying, as is often the case for low

speed systems. However, in practice, systems designed for low speed traffic, such as the

Transport Control Protocol (TCP) and ISO TP4, employ a timer scheme[l,3,4], and high speed

systems currently under development, such as the Asynchronous Transfer Mode (ATM) and

Xpress Transport Protocol (XTP), include a poll-based scheme [5,6,7].
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2. RELATIVE EXCESS DELAY

In this section, we examine the various components of retransmission delay for a given

point-to-point connection. We assume that retransmissions are performed on an end-to-end

basis and that the unit of retransmission is a data message. Throughout this section we make

the following simplifying assumptions: the data rate of the connection is constant, the source

always has data to send, messages arrive at the destination in the same order in which they were

sent by the source, packets are fixed size, data messages in the connection are comprised of N

packets, and control messages are comprised of one packet.

We consider the round trip delay (RTD) of the connection to be the total propagation delay,

queueing delay, and processing delay from source to destination and back. In high speed

systems such as ATM, the RTD is expected to be almost constant. However, in low speed

systems such as TCP/IP, the RTD may be highly variable. (This is discussed further in Section

4.) However, for our initial analysis, we will assume the RTD is fixed and that the delay from

source to receiver is the same as from receiver to source.

Let R be the data rate of the connection, in terms of the number of packets transmitted per

RTD. Throughout our analysis, the unit of time is the amount of time it takes to transmit one

packet. Thus, the RTD is R time units. As a point of reference, we refer to networks with an R

of about 1 or smaller as low speed networks; networks with an R on the order of 100 or higher

can be considered to be high speed networks.

Consider any data message and assume the transmission of the message starts at time T

Since we assume the transmission rate and RTD are fixed, the complete message is not expected

to arrive at the destination until time T+ N + .5R. N is the transmission delay in sending the N

packets of the message, and .5R is the delay from source to destination. Thus, N + .5R

represents the delay if the original transmission of the message is successful.

In order for the source to learn whether a transmitted message has been received correctly,

it must allow time for the receiver to send a control message. For example, the receiver can

send a positive acknowledgment (ACK) if a message is received successfully, or it can send a

negative acknowledgement (NACK) if a message needs to be retransmitted. We assume that

the receiver cannot make a decision as to whether or not a message needs to be retransmitted

until time T+ N + .5R. (Since data is assumed to travel at a fixed rate, a lost message can

actually be detected earlier than time T+ N + .5R; for simplicity, we assume that the receiver

must always wait until this time before deciding the message needs to be retransmitted.) Thus,

the earliest time at which the source can learn the status of a message is T+ (N + .5R) +

(1 + .5R). The '1' term is the transmission delay in sending a control message, and .5R is the

delay from destination to source. Assuming the source waits until T+ N + R +1 before

2



retransmitting a message, then the earliest time the retransmitted message could arrive at the

destination is T+ 2N + 1.5R + 1. Thus, the minimum delay due to retransmission is:

(T+ 2N + 1.5R + 1) - (T+ N +.5R) = N +R + 1. We refer to this as the minimum

retransmission delay. (In Section 3.2, we will consider a case where the minimum

retransmission delay is forced to be larger than N + R + 1.)

The minimum retransmission delay can potentially be achieved by a timer-based scheme,

although this would require that the source know the RTD precisely. For example, if an ACK

of a message is not received N + R + 1 time units after the message is sent, then the message is

retransmitted. However, not all retransmission schemes can attain the minimum retransmission

delay. For example, there may be a delay from the time the destination determines the status of

the message until the time it actually sends a control message back to the source indicating the

status. Or, the source may not immediately retransmit a message once it learns that a

retransmission is necessary. For example, if two messages are NACKed in one control

message, then one of the retransmissions will have to be delayed while the other is performed.

Thus, the actual retransmission delay may be N + R + 1 + E, where we refer to E as the excess

retransmission delay. As we will see in the sections below, the excess retransmission delay

greatly depends on our choice of retransmission scheme.

The actual value of E is not the crucial factor to consider, but rather the relative value of E

compared to the minimum retransmission delay. We define the relative excess delay D to be:

N + R + 1 (1)

Before proceeding, we discuss why the relative excess delay is important. First, consider a

high speed network. High speed networks such as ATM are likely to use a selective repeat

scheme, thus necessitating a resequencing buffer at the destination. (For background

information on selective repeat and Go Back N systems, refer to [1,8,9,10].) The

retransmission delay affects how large the buffer should be. The relative excess delay D affects

the relative extra buffer space that is needed. Consider a simplistic example where if D were 0,

the buffer space would need to be 10 Mb. and if D were 10%, the buffer space would need to

be 11Mb. Even though the size of the increment, 1Mb., is large, there is not that much

difference in requiring a 11Mb. buffer over a 10Mb. buffer. From equation (1), we see that as

the data rate increases, D tends toward E . Thus, at very high speeds, we are essentially

looking at the excess delay relative to the round trip delay.

Next, consider a low speed network. Typically, on low speed networks, Go Back N is

used rather than selective repeat. One of the chief concerns on a low speed network is the
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amount of bandwidth that is used. If a data message is lost and Go Back N is used, then the

minimum amount of wasted bandwidth will be N + R + 1 packet transmissions. D represents

the relative additional amount of wasted bandwidth. We see from equation (1) that if R is very

small compared to N, then D is close to N. Thus, at very low speeds, we are essentially

looking at the excess delay compared to the transmission delay of one message.

By looking at the relative excess delay, we favor schemes where E is small compared to

the minimum retransmission delay. This may not be the most important criterion, however, for

connections carrying delay sensitive traffic. For these connections, overall delay is the primary

concern; how the delay is apportioned between the minimum retransmission delay and the

excess delay is of secondary importance. For example, a scheme where the excess delay and

the minimum retransmission delay are equal and small in magnitude may be appropriate for

delay sensitive traffic. However, it would not appear to be a good scheme using the relative

excess delay criterion. Nevertheless, for many connections, the relative excess delay criterion

is a meaningful measure of performance. In the next section, we will use this criterion to gain

insight into the performance of poll-based retransmission schemes.

3. PERFORMANCE OF POLL-BASED RETRANSMISSION SCHEMES

In the basic polling scheme, the source periodically sends poll messages to the receiver

indicating which data messages have been sent. The receiver responds to the poll by

transmitting a status message indicating which of these data messages have not been received.

The source uses the status message to determine which data messages can be released from the

retransmission buffer and which data messages need to be retransmitted. We start off by

analyzing this simple scheme; at the end of the section we consider adding various options.

3.1 Random Losses

First consider the case where polls and status messages are not lost, and no more than one

data message is lost in between poll transmissions (i.e., a status message never generates more

than one retransmission). We assume that the receiver sends a status message immediately after

receiving a poll, and any necessary retransmissions are performed as soon as the status message

is received. With these assumptions, the excess retransmission delay t for any errored

message consists of the delay from when the message should have arrived at the destination

until the time a status message is sent NACKing the message. As shown if Figure 1, E

depends on how soon a poll is sent after the errored data message.
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Let I equal the number of data messages that are sent in between poll transmissions. The I

messages can be original transmissions or retransmissions. The expected value of E& for the

simple polling scheme, using the assumptions above, is:

E = Expected Value of E = (I- 1)N (2)
2 +1

The '1' term represents the transmission delay of sending the poll message. We combine

equations (1) and (2) to derive the expected relative excess delay for the polling scheme:

D = Expected Value ofD = (I- +)N + 2 (3)
2N + 2R + 2 (3)

In practice, it makes sense to use only integral values of I. A poll sent in the middle of a

data message generates the same status information as a poll sent at the beginning of the data

message, but generates it at a later time. Thus, only those values of D that correspond to

integral values of I can be attained. The minimum possible relative excess delay for a polling

scheme is attained when I equals 1. This corresponds to sending a poll after every message.

Time T T+N+.5R

I I

Source I Messagel I Message2 Message 3 Message4 Poll

Destination Message 1 Message 2 Message 3 Message 4 Poll

K'-- E -I

Figure 1 E represents the delay from the time message 2 should have arrived successfully at the destination to
the time the destination begins to transmit a status message NACKing message 2.

3.1.1 Polling Frequency

Assume a data connection requires that the expected relative excess delay be no more than

some Dmax (for the case when random messages are lost). Rearranging equation (3), the

source can calculate the appropriate value for I by:

I D,, (2N + 2R + 2) + N - 2
i= LDmax(2N+2R+2)+N-2j (4)

(where L * J indicates the integer portion)
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Some of the polling scheme proposals refer to sending a certain number of polls per RTD

rather than sending a poll after every I data messages. Given the target value Dmax, and letting

the number of polls that should be sent per RTD be F, then:

F = R (5)
N LDmax (2N +2R+ 2) + N - 2 +

· L + J
2Dmax RAs R increases for a fixed N, we see that I increases toward N and F increases

1
toward 2 D ax. Thus, more data messages are sent in between poll transmissions but more

polls are sent per RTD. Also, the polling rate in terms of polls per RTD becomes independent

of N.

3.1.2 Polling Overhead

From the standpoint of delay, polls should be sent frequently (i.e., the smaller I is, the

smaller D is in equation (3)). However, if explicit poll messages are sent, then a higher polling

frequency leads to greater overhead. A poll is comprised of one packet and one poll is sent after

every NI data packets. Letting V equal the fraction of traffic from source to destination that is

dedicated to polling, we see that:

V=NI+l (6)NI + I

(We ignore the overhead in the reverse direction, but for each poll arriving at the destination

there is a status message sent back to the source.)

To see the tradeoff between expected relative excess delay and overhead as a function of N

and R, we combine equations (3) and (6) to get:

V=D(2N + 2R + 2) + N1 (7)

This tradeoff is plotted in Graph 1 for R equal to 10 and in Graph 2 for R equal to 1000.

(A data rate of 100 Kb/sec, an RTD of 50 msec., and a packet size of 500 bits correspond to an

R of 10.) As stated above, only certain values of D can be attained due to the integer constraint

on I. Thus, for R equal to 10 only the discrete points that correspond to integral values of I are

plotted. For R equal to 1000, the discrete points were close enough together that continuous

curves are plotted.

If N is large, then both low expected relative excess delay and low overhead can be

achieved (although if R is small, it can only be achieved if a poll is sent after each data

message). If R and N are small, then there is a greater tradeoff between delay and overhead.

For example, for R equal to 10 and N equal to 1, an expected relative excess delay of 10% can
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be attained, but only at the expense of about 50% overhead. As R gets larger, the overhead V

tends towards D and is thus independent of N. This is illustrated on Graph 2. For R equal

to 1000, we can attain a 5% expected relative excess delay with less than 1% overhead,

regardless of the size of the message.

Note that the polling overhead may not be a critical factor. As we discuss in Section 3.5.2,

it may be possible to piggyback the polls on data messages, so that the overhead is reduced to

almost zero.

Graph 1 Percent Overhead vs. Percent Expected Relative Excess Delay
R=10

50

40T
30 | * N=I

Percent Overhead
20- *3 * i N=10

10- a0

o-X I I I-I-I-HI N=100
0 10 20 30 40 50 60

Percent Delay

Graph 2 Percent Overhead vs. Percent Expected Relative Excess Delay
R=1000

4 N=I

Percent Overhead - N=10

1 -- N=100

1 5 9 13 17 21 25 29

Percent Delay

3.1.3 Worst Case vs. Average Case

Above we considered the average excess delay; we should also consider the worst case

excess delay. Let E equal the expected excess delay as defined in equation (2). Assuming polls

and status messages are not lost, then the worst case scenario in terms of delay is when the
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message transmitted immediately after a poll is lost. In this case, the delay is approximately

double that of the average case. This is shown in Figure 2.

about 2E

E Message 1 Message 2 Message 3 Message 4 Message 5 

Average case occurs if this message is lost

Worst case occurs if this message is lost

Figure 2 Average and worst case delay if poll and status message are not lost.

3.2 Burst Losses

In Section 3.1, we assumed that a status message never generated more than one

retransmission. Thus, when the status message is received at the source, any NACKed

message can be immediately retransmitted. In this section, we consider burst losses, where

many consecutive messages are lost. First, consider the case where message X and message

X+1 are both NACKed in the same status message. Message X+1 will not be retransmitted

immediately; it will be delayed by an extra N time units while message X is retransmitted before

it.

Next consider the case where all I data messages that are sent in between poll transmissions

are dropped. Refer to Figure 3, where we assume I equals 3. Assume the poll that follows the

dropped messages is received correctly, and the corresponding status message is received at the

source. This status message will NACK all I messages. From the figure, we see that for all I

messages, there will be a delay of NI + R + 2 time units from the time the message is originally

transmitted until the time it is retransmitted. Since the minimum possible retransmission delay

is N + R + 1, each message suffers an excess delay of (I-1)N + 1. Above, where we assumed
(I-1)Nonly one of the I messages is lost, the expected excess delay is 2 + 1.

If the burst loss is due to a burst error along the data path, then it is likely the poll messages

will be lost also. Or, if the burst loss is due to congestion, and polls do not have a higher

priority than data, then it is likely that polls will be dropped. If no polls or data messages arrive

at the receiver, then no status messages will be sent. Since the source cannot determine which
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messages have been lost until a status message arrives, the lack of status messages will delay

the retransmission process.

Retransmissions
N N N 1 N N N

F4 .5 R .5R 

NI + R + 2 Time until 1st Message
Retransmission

4 NI + R + 2 >| Time until 2nd Message
I Retransmission

Assume I = 3

Figure 3 Delay if all I data messages are lost.

Assume a burst loss starts at time T and ends at time T+ B, where B is less than

R + N + 1, i.e., all transmissions from time Tto T+ B are dropped. Define a successful poll

as one that arrives successfully at the receiver and whose corresponding status messages arrives

successfully at the source. Assume the first successful poll after the burst ends is sent at time

T+ B + 6, as shown in Figure 4. Then the first retransmission will occur at time T+ B + 6 +

R + 2 (the '2' term is due to the transmission time of the poll and of the status message). If the

excess delay had been 0, the first retransmission would have been sent at time T+ R + N + 1.

Thus, in this scenario, the polling scheme results in an excess delay of B + 6 + 1 - N. The

relative excess delay is:
B+6+1-N

R+N+1 - N(8)R + N + 1

If the first poll sent after the burst ends is successful, then 6 lies between 0 and NI.

We see that the excess delay in this scenario has two main components: the delay until the

burst error ends (i.e., B) and the delay until a poll is sent (i.e., 6). In Section 3.1, where we

discussed the scenario of just a single message being dropped (as opposed to a burst of
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messages being lost), the excess delay was composed of the delay until a poll is sent. Thus,

when burst errors occur, and the length of the burst error is shorter than R + N + 1, the excess

delay essentially increases by the length of the burst error. (The actual amount of the increase in

excess delay will depend on where in the polling 'cycle' the burst error starts and ends.)

First successful poll after burst

Source *
T T+B T+B+8 T+R+N+1 T+B+5+R+2

X1 2 P1 3 4 P1 5 6 

Destination S

Figure 4 Ideally, message 1 would be retransmitted at time T+ R + N + 1. However, message 1 will not be
retransmitted until a poll sent after it reaches the destination successfully and triggers a successful status
message. Thus, the retransmission mechanism is susceptible to error in either direction.

Next, consider the case where B is greater than R + N + 1. It would not be desirable to

retransmit a message at time T+ R + N + 1, since it would be lost again as part of the burst

loss. Ideally the first retransmission would be sent at time T+ B. Refer to Figure 5. Assume

that the first successful poll after the burst ends is sent at time T+ B + 6. The first

retransmission will occur at time T+ B + 6 + R + 2 rather than T+ B. Thus, in this scenario,

the excess delay is 6 + R + 2. The relative excess delay, according to the modified definition,

is:

6+R+2 2
B (9)B

If the first poll sent after the burst ends is successful, then 6 lies between 0 and NI.

The excess delay in this scenario has two main components: the delay until a poll is sent

(i.e., 6) and the round trip delay until the corresponding status message is received (i.e., R). In

all of the other scenarios discussed thus far, the delay in waiting for the status message to arrive

was part of the minimum retransmission delay and not the excess delay (i.e., in other scenarios

the source needed to wait a minimum of one round trip delay in order to allow feedback from
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the destination time to arrive; in this scenario, we assume that the duration of the burst error

provides enough time for any feedback to reach the source so that ideally the source would start

to retransmit as soon as the burst error ends.) Thus, compared to the scenario where single

messages are lost, the excess delay for the long burst error scenario essentially increases by the

amount of one round trip delay. (The actual amount of the increase in excess delay will depend

on where in the polling 'cycle' the burst error starts and ends.)

First successful poll after burst

Source
T T+R+N+1 T+B T+B+6 T+B+tR+2

1 2 P 3 4 6 P

Destination S

Figure 5 It is not desirable to retransmit message 1 at time T+ R + N + 1, since it would be dropped again.
Ideally, it would be retransmitted at time T+ B. However, the retransmission will not occur until a poll reaches
the destination and its corresponding status message reaches the source.

As we can see from these examples, burst losses result in an increase in the excess delay.

This delay increase is desirable in the following situation: assume the burst loss is due to

congestion and assume window-based flow control is used. Window-based flow control does

not exercise control over retransmissions (unless the window shrinks sufficiently); the source

dumps a retransmission into the network whenever a NACK arrives. If status messages are not

being sent by the receiver, then NACKs will not be received by the source. Thus, poll-based

schemes provide more time for the congestion to dissipate.

If rate-based flow control is used, however, the increase in excess delay is not desirable.

In rate-based flow control, the source sends ox messages per second, for some a, whether the

messages are original transmissions or retransmissions. Thus, the lack of status messages will

not decrease the traffic being sent into the network. It just means that until status messages

arrive NACKing the lost data, the data messages that are sent by the source will be original

transmissions rather than the necessary retransmissions. Of course, it is possible the source
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will decrease its data rate to [3 messages per second after it has not received a status message for

a long time. But given that it is sending P messages per second, it would be preferable from the

standpoint of delay that these be the necessary retransmissions rather than new transmissions

(since the receiver must deliver the messages in proper sequence). Thus, the fact that status

messages are not being sent by the receiver is undesirable in this scenario. (However, note that

a rate-based scheme would likely be implemented with some sort of restriction on the

transmission window so that the lack of NACKs in the polling scheme would eventually lead to

the end of the send window being reached; at this point the extra delay in the polling scheme

would be beneficial if congestion is still present in the network.) If the burst loss is due to a

burst error along the data path, then the increase in excess delay is undesirable.

3.3 Prevention of Unnecessary Retransmissions

One advantage of using a polling scheme is that unnecessary retransmissions can be

prevented if messages arrive at the receiver in the same order in which they are transmitted. The

general idea is that if a poll is sent immediately after message number X, then by the time the

poll arrives at the destination, all messages with sequence number less than or equal to X

should have arrived already. Thus, the receiver knows that if any of these messages have not

arrived, they need to be retransmitted. It is assumed the poll contains some indication that all

messages up to sequence number X have been transmitted.

Of course, a second poll could arrive at the destination before the retransmissions have

been received. This would cause a second status message to NACK the lost messages, which

could lead to unnecessary retransmissions. To avoid this, there must be some way of

associating a NACK with the poll that generated it, and there must be some way of determining

whether a retransmission has been sent before or after the poll. ATM makes use of poll

sequence numbers to accomplish this; refer to [5] for the full details of the scheme. In [ 11], we

formally prove that the method used in ATM does prevent unnecessary retransmissions, under

certain reasonable conditions.

3.4 RTD Estimate

From equation (5), we see that in order to determine the frequency of polls, the source

needs to know the value of R. R is defined as the number of packets transmitted in one RTD.

Above, we assumed that the RTD remained constant throughout the connection. In reality, the

RTD will change due to varying queueing delays along the data path. Thus, the source needs to
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monitor the delay between sending a poll and receiving an associated status message in order to

estimate the RTD.

If the estimate of the RTD is too high, the excess delay will be higher than intended. If the

estimate is too low, the overhead will be higher than necessary. However, even if the source

incorrectly estimates the RTD, unnecessary retransmissions do not occur (assuming some sort

of sequencing scheme is used). As we will see in Section 4, this is not the case for timer-based

schemes.

3.5 Variations of the Simple Polling Scheme

3.5.1 Unsolicited Status Messages

One feature that can be added to a polling scheme is that in addition to sending status

messages in response to polls, the receiver is permitted to send a status message whenever it

determines that a data message has been lost. For example, consider a connection where data is

expected to travel in order. If message number 2 arrives and message number 1 has not

arrived, the receiver can assume message number 1 has been lost and immediately send a status

message requesting the retransmission of message number 1 rather than waiting for a poll to

arrive. This feature is included as part of the ATM proposal.[5] We will adopt the terminology

of ATM and refer to these additional status messages as unsolicited STATs. We will refer to

status messages sent in response to polls as solicited STATs.

Let's analyze the delay benefit provided by unsolicited STATs more precisely. Consider

any lost data message. Assume that the message following the lost data message arrives

correctly, and assume the source is sending messages at a steady rate. The excess delay E

depends on which data message has been lost (see Figure 6). If the lost data message is

immediately followed by a poll, then the lost message is NACKed in a solicited STAT and E;

equals one (the unit of time is the time to transmit one packet). In all other cases, the lost data

message will be initially NACKed in an unsolicited STAT. The unsolicited STAT is sent after

the destination receives and reassembles the next data message; thus, E equals N.

PolI Mey~ge I I I Message2 Message3 Mess 4 

Figure 6 Excess retransmission delay when unsolicited STATs are used. If message 1 is lost, it will be
NACKed in an unsolicited STAT; if message 4 is lost, it will be NACKed in a solicited STAT.
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Assume polls are sent after every I data messages. The expected value of E is then:

E = Expected Value of ZE using unsolic. STATs = (I 1)N (10)

Combining equations (1) and (10), we get an expected relative excess delay of:

D= (I-1)N + 1
I(N + R + 1)

Comparing equations (2) and (10), we see that the delay benefit in using unsolicited STATs

is greater the larger the value of I. This can be seen on Graphs 3 and 4. If I equals 1, a poll

arrives after each data message; thus, the unsolicited STAT option would be unnecessary

(unless a poll were lost). For some low and medium speed connections, I may need to be 1 in

order to meet a certain delay goal. For example, assume it is desired that the expected relative

excess delay be no more than 20%, and assume R is 10 and N is 10. From Graph 3, we see

that I needs to be 1 in order to keep the expected relative excess delay below 20%. There would

be no need to implement unsolicited STATs. At high speeds, even as I increases the relative

excess delay remains small (see Graph 4); it is likely the polling mechanism would be

implemented with I greater than 1. Thus, unsolicited STATs would provide a delay benefit for

such connections. However, the reduction may be very small, e.g., on Graph 4, if I equals 6,

the reduction in delay is less than 2%.

Note that equations (10) and (11) pertain to the case where random losses occur. If a burst

of messages is lost, the excess delay will increase, as was described in Section 3.2. A

retransmission will not occur until either a data or poll message gets through to the destination

and its corresponding status message arrives at the source.

Unsolicited STATs can also be viewed as a means of reducing the polling overhead. For

example, assume R is 10 and N is 10 and assume the desired maximum expected relative excess

delay is 40%. Then, as shown on Graph 3, the interval between polls can be increased from 2

to 4 messages if unsolicited STATs are used. However, there are problems with reducing the

polling rate too much. First, if an unsolicited STAT is lost en route to the source, there could

be a long delay until the next STAT is sent. Second, if traffic is bursty and the last message in a

burst is lost, it will not be NACKed until a poll arrives or data transmission resumes.

(Actually, polls should probably be sent at the end of data bursts.) Third, status messages are

also used to ACK data so that the source can release ACKed messages. Since unsolicited

STATs are only sent when a message is lost, they cannot be relied upon for releasing data at the

source. A lower polling rate would therefore necessitate larger buffers at the source.
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Overall, we see that for certain connections, unsolicited STATs may provide a benefit in

terms of delay and overhead, but the benefit may be insignificant. The drawback of using

unsolicited STATs is the increased complexity of the polling scheme. The receiver must send

two different types of status messages; these two types of status messages may need to be

processed differently by the source (as is the case in ATM).

Graph 3 Percent Expected Relative Excess Delay vs. Interval Between Polls
Percent Delay R = 10 N = 10
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Graph 4 Percent Expected Relative Excess Delay vs. Interval Between Polls
Percent Delay R = 1000 N = 10
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3.5.2 Piggybacked Polls

In this section we consider a solicited STAT-only scheme where the polls are

'piggybacked' on data messages. It is assumed each data message contains a field that indicates

whether the message also serves as a poll. The advantage of this option is that separate poll

messages may not have to be sent, thus reducing the polling overhead.

Before discussing the drawbacks, we should comment on the implementation of

piggybacked polls. The poll indicator field could be included in any packet of the data message.

Nevertheless, we assume that the entire message must be received and reassembled at the
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destination before the poll can generate a status message. From the point of view of delay, it

would be better if the poll could generate a status message as soon as the packet that contains it

arrives. However, this violates the principle of isolating layers within the network, since we

assume retransmissions are handled only at the layer that deals with messages. Also, if a data

redundancy check is included per-message rather than per-packet, then the integrity of the poll-

carrying packet can only be checked once the whole message has been reassembled.

One drawback of piggybacking polls is that it may lead to greater delay. Consider the

scenario where a data message is lost but the following message is received intact. If we are

using a piggybacked poll scheme, and the following message is marked as a poll, then the

excess retransmission delay is N time units, i.e., the time for the following data message to

arrive. In a scheme where explicit one packet poll messages are sent after every data message,

the excess delay is only one time unit.

In fact, the difference in delay may be even greater. The longer a message is, the greater

the probability it will be lost; thus, a poll piggybacked onto a long data message is more likely

to be dropped than a one packet explicit poll message. In general, we see that the larger N is,

the greater the increase in expected excess delay when using piggybacked polls.

The third drawback of using piggybacked polls is that it may not be possible to totally rely

on them as the sole means of polling. If there is no more data to be sent or if the data traffic is

very bursty then explicit polls may need to be sent. This adds slightly to the complexity of the

scheme, since the source has to monitor whether or not explicit poll messages are needed.

We conclude that using piggybacked polls makes the most sense when N is relatively

small. With N small, the savings in overhead can potentially be large and the delay penalty

relatively small.

3.5.3 Receiver Generated Status Messages

In the poll-based schemes discussed thus far, the source sends polls to the receiver and the

receiver immediately responds to the poll by sending a status message. Another option is to

have the receiver control when status messages are sent. Consider a scheme where the receiver

relies solely on receiving a message with sequence number greater than X in order to determine

that message X has been lost; neither the receiver nor the source maintains a timer for the

purpose of generating retransmissions. This is similar to the unsolicited status message option

discussed earlier except that the receiver controls when it sends the status message. As with the

schemes discussed above, it is possible to eliminate unnecessary retransmissions in receiver-

controlled schemes, assuming that data travels in sequence.
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There are some potential problems with receiver controlled schemes if no retransmission

timers are maintained. For example, if the last message of a burst is lost, the receiver will have

no way of knowing the message was ever sent, and thus will not send a status message

NACKing it until data transmission resumes. Another problem scenario is tied in with

window-based flow control.[12] Assume that the window size is W; if the oldest

unacknowledged message is X, then the source can't send messages past X+W-1. If W

consecutive messages are lost, the protocol will deadlock.

There are several solutions to these problems, all of which add to the complexity of the

protocol. The solution discussed in [12] is to send 'empty' data messages that are not subject to

flow control restrictions. Empty messages could be sent if the source has no more data to send

or if it has reached the end of its send window. Alternatively, the source could send a poll

message rather than an empty data message. Also, the scheme could be modified so that a

retransmission timer is kept at either the source or the destination. This would avoid the

deadlock problems, although unnecessary retransmissions may occur.

The overhead should be less in receiver-based schemes. The receiver does not have to

send a status message until it has something to NACK, or until it needs to free up space in the

retransmission buffer at the source. Thus, fewer status messages would be sent in a system

where the message loss rate is not high. Also, explicit poll messages do not have to be sent,

except for the situations enumerated above. The minimum delay before a lost message is

NACKed is N time units, i.e., the time for the next message to arrive. Thus, as N gets larger,

the excess delay in receiver-controlled schemes increases.

The receiver-controlled scheme provides greater flexibility by allowing the receiver to send

status messages when it wants. Other than that, it is not significantly different from a polling

scheme where piggybacked polls and unsolicited STATs are allowed.

4. TIMER-BASED RETRANSMISSION SCHEMES

In this section, we examine schemes where retransmissions are triggered by a timer rather

than a poll. We assume that the retransmission timer is maintained at the source (alternatively

the timer could be kept at the receiver as is done in NETBLT[2,13,14]). After a message is

transmitted, we assume the time of transmission is stored along with the message in the

retransmission buffer. The receiver sends an ACK after each successful message arrival. As

ACKs arrive, the source continually updates its estimate of the RTD. If the estimate of the RTD

added to the timestamp of the oldest unacknowledged message is less than the current time, then

the message should be retransmitted.
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4.1 Delay Analysis

Assume packets are fixed size, messages are comprised of N packets, and the data rate is

fixed. First, consider the ideal case where the RTD is known precisely. Using the conventions

of Section 2, if a message is initially transmitted at time T, an ACK of the message should

arrive at the source at time T+ N + R + 1. If an ACK has not been received by this time, the

source assumes the message did not reach the destination successfully and retransmits the

message.

Thus, in this ideal case where R is known, the excess delay is 0. Realistically, R is not

known precisely. Let RT be the true RTD and let RE be the estimate of the RTD. If RE > RT,

then the excess delay equals RE - RT. However, if RE < RT, then the timer will expire before

the ACK could possibly have reached the source; this may result in an unnecessary

retransmission.

In contrast to poll-based schemes, the performance of the timer-based scheme heavily relies

on how well the source can estimate the RTD. If the RTD is not highly variable then the source

should have a good estimate of the RTD, so that there is little excess delay. If the RTD does

vary a lot, the inability of the source to accurately estimate the RTD may lead to large excess

delay, or a large number of unnecessary retransmissions. The variability of the RTD depends

largely on the queueing delays along the data path. Queueing delays are caused by packets

arriving at an intermediate node faster than the node can process them, or by many packets at a

node contending for the same output line. In either case, the packets must wait in a buffer until

the node can process them (or if the buffer is full, the packets will be dropped). The time spent

waiting in a buffer constitutes queueing delay and increases the effective RTD. For a given

packet size and buffer size, queueing delays are potentially longer the lower the data rate of the

network (assuming flow control is equally effective in both cases). Thus, the variability of the

RTD is expected to be larger with low speed networks than with high speed networks. Thus,

we expect the performance of timer-based schemes to be worse on low-speed networks.

4.1.1 Burst Losses

In Section 3, it was shown that in poll-based schemes, excess delay increases when a burst

of messages is lost. In timer-based schemes, however, retransmissions are not delayed when

burst losses occur. Assume the first message lost in the burst is originally transmitted at time

T, and assume messages are lost for the next B time units. First, consider the case where B is

less than R + N + 1. Assuming the source knows the RTD precisely, it will begin to
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retransmit the lost messages at time T+ R + N + 1; thus, the relative excess delay will be 0.

Thus, timer-based schemes are relatively unaffected by burst errors shorter than one round trip

delay. As shown in Section 3.2, if a poll-based scheme is used, the expected excess delay

increases by approximately the length of the burst.

Next, consider the scenario where B satisfies: K (R + N + 1) < B < (K+1) (R + N + 1)

for some K > 1. The first lost message will be retransmitted at times T+ i(R + N + 1) for

1 < i < (K+i). The first K retransmissions will be lost as part of the burst; we assume the

(K+1)st retransmission is successful. The excess delay will be (K+1)(R + N + 1) - B and the

relative excess delay will be (K+ )(R+N+) - B. Thus, the relative excess delay can beB

bounded by:
0 < (K+1)(R + N + 1) - B R + N + 1 00% (12)

B B

Of course, this depends on the source having an accurate estimate of the RTD. For the poll-
6+R+2

based scheme, the relative excess delay was given in (9) as B where 6 lies between

0 and NI, assuming the first poll sent after the burst ends is successful. The drawback of the

timer-based scheme during a long error burst is that the lost messages are unnecessarily

retransmitted K times. This could be detrimental if the burst loss is due to congestion and

window-based flow control is used (refer back to the discussion in Section 3.2).

5. POLL-BASED SCHEMES VS. TIMER-BASED SCHEMES

Let's review the major differences between poll-based and timer-based retransmission

schemes. First, the performance of timer-based schemes is more heavily dependent upon the

source's ability to estimate the RTD. Second, assuming messages travel in-sequence, a poll-

based scheme can be implemented such that there are no unnecessary retransmissions. Third,

the two schemes perform quite differently when bursts of messages are lost. If the burst loss is

shorter than one round trip delay, then the excess delay in the poll-based scheme increases by

about the duration of the burst; the excess delay in the timer-based scheme is relatively

unaffected. If the burst loss is longer than one round trip delay, then the excess delay increases

in both schemes, although the increase in poll-based schemes is likely to be greater; however,

timer-based schemes trigger retransmissions too quickly in this scenario so that some

retransmissions will be lost as part of the burst loss.

Using this analysis, we examine whether a timer-based scheme or a poll-based scheme is

more appropriate for a given network. Throughout this section it is assumed that packets travel

in order. In Section 5.3, we discuss schemes that include both a poll mechanism and a timer.
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5.1 Low Speed Networks

First, let's consider a low speed system where the message size is small. Neither type of

scheme performs very well in this environment. In poll-based schemes, the transmission time

of the poll represents a significant portion of the total retransmission time. In timer-based

schemes, the low speed of the network may result in highly variable queueing delays; the

inability to properly estimate the RTD could potentially result in large excess delay or in many

unnecessary retransmissions.

Since the major concern on low speed networks is likely to be bandwidth usage, poll-based

schemes are preferred since they do not produce unnecessary retransmissions. Note that if a

poll-based scheme is used, the polls should be piggybacked to reduce the polling overhead.

One could argue that if buffers at the intermediate nodes are kept very small, then the

queueing delays would be less variable, enabling a timer-based scheme to perform better.

However, small buffers would likely lead to bursts of messages being dropped due to

congestion. Assuming window-based flow control is used, the extra retransmission delay in

poll-based schemes during times of congestion would be desirable. Thus, even in this

situation, we see that poll-based schemes are preferred.

For low speed networks where the message size is large, poll-based schemes provide small

expected relative excess delay (for random losses), in addition to being able to prevent

unnecessary retransmissions. Thus, their advantage over timer-based schemes is even more

pronounced in this environment.

In general, we conclude that for low speed systems, poll-based schemes are preferable to

timer-based schemes.

5.2 High Speed Networks

First, consider the case where all speeds in a network are scaled up by the same factor,

while the packet size and buffer size remain fixed. As shown in Section 2 on Graph 2, poll-

based schemes perform well at high data rates (assuming bursts of messages are not lost).

Also, as the data rates increase, queueing delays decrease, assuming flow control remains

equally effective. Thus, timer-based schemes also perform well. In general, both types of

schemes should provide low expected relative excess delay when there are random losses if all

connections are running at high speed.

High speed networks, however, are likely to carry a wide range of traffic types; the data

rates and burstiness of the various connections may span a wide range. Thus, despite the fact
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that the data links are running at high speed, some of the individual connections may be running

at low speed. This mix of traffic favors the use of timer-based schemes. The high speed of the

links will result in low queueing delay. Thus, the estimates of the RTD should be fairly

accurate. For the low speed connections in the system, the delay in waiting for a poll to arrive

may be relatively large (due to the transmission delay in sending a poll); thus, these connections

may suffer a large relative excess delay if poll-based schemes are used.

Some type of rate-based flow control is likely to be used on these integrated service

systems, which again favors the use of timer-based schemes. In rate-based flow control, a

certain number of messages will be sent in a given time period, regardless of whether the

messages are new transmissions or retransmissions. Thus, if the system is congested,

delaying retransmissions does not help alleviate the congestion (unless an upper limit on the

send window is reached). Thus, from the standpoint of delay, the retransmissions should be

sent as quickly as possible, which favors the use of timer-based schemes.

One strategy that might be used on high speed networks is to make the buffers at the

intermediate nodes very large. Flow control would still be implemented with the goal of

keeping queueing delays small. However, if severe congestion develops, packets will be

queued in buffers at the intermediate nodes rather than being dropped. The rationale for this is

that queueing a message in a buffer will probably result in less overall delay than dropping the

message and retransmitting it. In such a scheme, losses due to congestion would be less likely;

also, the queueing delays may be more variable, especially if the flow-control mechanism is not

effective. Thus, the performance difference between timer-based and poll-based schemes

would be less significant in such an environment. However, if burst errors are expected to be

common, then again the increase in excess delay which accompanies burst losses in poll-based

schemes would be undesirable.

Overall, timer-based schemes are better able to provide low delay in a high speed,

integrated service environment.

5.3 Combination of Polling and Timer Mechanism

It is possible to use both polls and a timer to generate retransmissions. The polling

mechanism should be relied upon as the primary means of generating retransmissions since it

does not produce spurious retransmissions. The timer mechanism should be used to provide an

upper limit to the excess delay.

The polling portion of the scheme can be similar to the scheme described in Section 2,

where the source sends polls and the destination responds with status messages that can trigger
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retransmissions. In addition, whenever a message is received successfully at the destination,

the destination sends an ACK of the message back to the source. The source maintains its

retransmission timers based on the transmission times of polls rather than data. Assume poll P

is transmitted at time T, and assume the source's estimate of the RTD is RE. The timer

corresponding to poll P should be set to expire at time T+ 2 + P RE, where P > 1 permits some

error in estimating RE and where 2 represents the transmission time of the poll and the

corresponding status message. If the timer corresponding to poll P expires without the source

receiving a status message corresponding to poll P or corresponding to a poll sent after poll P,

the source retransmits all unacknowledged messages sent prior to poll P. (Another poll/timer

scheme is described in [15].)

A combination poll/timer scheme is most appropriate for a network that has characteristics

that are somewhere 'in between' low speed and high speed. The RTD should be somewhat

varying such that relying on a timer scheme alone would produce too many retransmissions.

However, the RTD should not be so difficult to estimate that f needs to be set very high in

order to avoid many retransmissions (which essentially renders the timer mechanism almost

useless). Low retransmission delay should be somewhat of a concern, to make it worthwhile to

implement the timer scheme in order to upper bound the excess delay. Bandwidth efficiency

should be somewhat of an important issue, otherwise there would be no need to implement

polls.

The more closely the characteristics of the system resemble those of a high speed network,

i.e., the better the source can estimate the RTD and the more important low delay is, the smaller

[3 should be. The smaller P is, the larger role the timer mechanism plays. Conversely, the

lower the speed of the system, the larger P3 should be; this increases the role of the polls and

status messages. Implementing both polling and timer mechanisms allows the source a lot of

flexibility in establishing the tradeoff between low delay and bandwidth efficiency. The

drawback is the added complexity. The source has to deal with sending polls and setting

timers, and the destination has to send ACKs as well as status messages.

6. CONCLUSION

Our analysis shows that the property of no unnecessary retransmissions makes poll-based

retransmission schemes well suited to systems where bandwidth efficiency is important. The

potential of large excess retransmission delay during burst losses is the chief drawback to using

such schemes on high speed networks, where low latency is important. On high speed

networks, the speed of the links should result in low round trip delay variability, which favors
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the use of timer schemes. Another option is to combine the best features of the two schemes

and use polls as the primary means of generating retransmissions and use a timer as a means of

upper bounding the retransmission delay.
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